Evaluation of traditional and machine learning approaches for modeling volatile fatty acid concentrations in anaerobic digestion of sludge: potential and challenges

Author:

Abubakar Umar Alfa,Lemar Gul Sanga,Bello Al-Amin Danladi,Ishaq Aliyu,Dandajeh Aliyu Adamu,Jagun Zainab ToyinORCID,Houmsi Mohamad Rajab

Abstract

AbstractThis study evaluates models for predicting volatile fatty acid (VFA) concentrations in sludge processing, ranging from classical statistical methods (Gaussian and Surge) to diverse machine learning algorithms (MLAs) such as Decision Tree, XGBoost, CatBoost, LightGBM, Multiple linear regression (MLR), Support vector regression (SVR), AdaBoost, and GradientBoosting. Anaerobic bio-methane potential tests were carried out using domestic wastewater treatment primary and secondary sludge. The tests were monitored over 40 days for variations in pH and VFA concentrations under different experimental conditions. The data observed was compared to predictions from the Gaussian and Surge models, and the MLAs. Based on correlation analysis using basic statistics and regression, the Gaussian model appears to be a consistent performer, with high R2 values and low RMSE, favoring precision in forecasting VFA concentrations. The Surge model, on the other hand, albeit having a high R2, has high prediction errors, especially in dynamic VFA concentration settings. Among the MLAs, Decision Tree and XGBoost excel at predicting complicated patterns, albeit with overfitting issues. This study provides insights underlining the need for context-specific considerations when selecting models for accurate VFA forecasts. Real-time data monitoring and collaborative data sharing are required to improve the reliability of VFA prediction models in AD processes, opening the way for breakthroughs in environmental sustainability and bioprocessing applications.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3