Hyperparameter Search for Machine Learning Algorithms for Optimizing the Computational Complexity

Author:

Ali Yasser1ORCID,Awwad Emad2ORCID,Al-Razgan Muna3ORCID,Maarouf Ali2ORCID

Affiliation:

1. Department of Information Systems, College of Computer and Information Sciences, King Saud University, P.O. Box 51178, Riyadh 11543, Kingdom of Saudi Arabia (KSA)

2. Electrical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Kingdom of Saudi Arabia (KSA)

3. Department of Software Engineering, College of Computer and Information Sciences, King Saud University, P.O. Box 22452, Riyadh 11495, Kingdom of Saudi Arabia (KSA)

Abstract

For machine learning algorithms, fine-tuning hyperparameters is a computational challenge due to the large size of the problem space. An efficient strategy for adjusting hyperparameters can be established with the use of the greedy search and Swarm intelligence algorithms. The Random Search and Grid Search optimization techniques show promise and efficiency for this task. The small population of solutions used at the outset, and the costly goal functions used by these searches, can lead to slow convergence or execution time in some cases. In this research, we propose using the machine learning model known as Support Vector Machine and optimizing it using four distinct algorithms—the Ant Bee Colony Algorithm, the Genetic Algorithm, the Whale Optimization, and the Particle Swarm Optimization—to evaluate the computational cost of SVM after hyper-tuning. Computational complexity comparisons of these optimization algorithms were performed to determine the most effective strategies for hyperparameter tuning. It was found that the Genetic Algorithm had a lower temporal complexity than other algorithms.

Funder

Research & Innovation, Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3