The Exploration of Predictors for Peruvian Teachers’ Life Satisfaction through an Ensemble of Feature Selection Methods and Machine Learning

Author:

Holgado-Apaza Luis Alberto1ORCID,Ulloa-Gallardo Nelly Jacqueline1ORCID,Aragon-Navarrete Ruth Nataly2ORCID,Riva-Ruiz Raidith3,Odagawa-Aragon Naomi Karina4ORCID,Castellon-Apaza Danger David1ORCID,Carpio-Vargas Edgar E.5ORCID,Villasante-Saravia Fredy Heric5ORCID,Alvarez-Rozas Teresa P.5ORCID,Quispe-Layme Marleny6ORCID

Affiliation:

1. Departamento Académico de Ingeniería de Sistemas e Informática, Facultad de Ingeniería, Universidad Nacional Amazónica de Madre de Dios, Puerto Maldonado 17001, Peru

2. Departamento Académico de Ecoturismo, Universidad Nacional Amazónica de Madre de Dios, Puerto Maldonado 17001, Peru

3. Departamento Académico de Ciencias Económicas, Facultad de Ciencias Económicas, Universidad Nacional de San Martin, Tarapoto 22200, Peru

4. Escuela Profesional de Ingeniería de Sistemas e Informática, Facultad de Ingeniería, Universidad Nacional Amazónica de Madre de Dios, Puerto Maldonado 17001, Peru

5. Departamento Académico de Ingeniería Estadística e Informática, Universidad Nacional del Altiplano-Puno, Puno 21001, Peru

6. Departamento Académico de Contabilidad y Administración, Facultad de Ecoturismo, Universidad Nacional Amazónica de Madre de Dios, Puerto Maldonado 17001, Peru

Abstract

Teacher life satisfaction is crucial for their well-being and the educational success of their students, both essential elements for sustainable development. This study identifies the most relevant predictors of life satisfaction among Peruvian teachers using machine learning. We analyzed data from the National Survey of Teachers of Public Basic Education Institutions (ENDO-2020) conducted by the Ministry of Education of Peru, using filtering methods (mutual information, analysis of variance, chi-square, and Spearman’s correlation coefficient) along with embedded methods (Classification and Regression Trees—CART; Random Forest; Gradient Boosting; XGBoost; LightGBM; and CatBoost). Subsequently, we generated machine learning models with Random Forest; XGBoost; Gradient Boosting; Decision Trees—CART; CatBoost; LightGBM; Support Vector Machine; and Multilayer Perceptron. The results reveal that the main predictors of life satisfaction are satisfaction with health, employment in an educational institution, the living conditions that can be provided for their family, and conditions for performing their teaching duties, as well as age, the degree of confidence in the Ministry of Education and the Local Management Unit (UGEL), participation in continuous training programs, reflection on the outcomes of their teaching practice, work–life balance, and the number of hours dedicated to lesson preparation and administrative tasks. Among the algorithms used, LightGBM and Random Forest achieved the best results in terms of accuracy (0.68), precision (0.55), F1-Score (0.55), Cohen’s kappa (0.42), and Jaccard Score (0.41) for LightGBM, and accuracy (0.67), precision (0.54), F1-Score (0.55), Cohen’s kappa (0.41), and Jaccard Score (0.41). These results have important implications for educational management and public policy implementation. By identifying dissatisfied teachers, strategies can be developed to improve their well-being and, consequently, the quality of education, contributing to the sustainability of the educational system. Algorithms such as LightGBM and Random Forest can be valuable tools for educational management, enabling the identification of areas for improvement and optimizing decision-making.

Funder

Universidad Nacional Amazónica de Madre de Dios

Publisher

MDPI AG

Reference142 articles.

1. Investigating Teachers’ Life Satisfaction;Dagli;Univers. J. Educ. Res.,2017

2. The Satisfaction with Life Scale;Diener;J. Personal. Assess.,2010

3. Subjective Well-Being Is Essential to Well-Being;Diener;Psychol. Inq.,2009

4. Lind, N. (2014). Better Life Index. Encyclopedia of Quality of Life and Well-Being Research, Springer.

5. Happiness of the Younger, the Older, and Those in Between;Helliwell;World Happiness Rep.,2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3