Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges

Author:

Bischl Bernd12ORCID,Binder Martin12,Lang Michel23ORCID,Pielok Tobias1,Richter Jakob14ORCID,Coors Stefan1ORCID,Thomas Janek1,Ullmann Theresa25ORCID,Becker Marc1ORCID,Boulesteix Anne‐Laure25ORCID,Deng Difan6,Lindauer Marius6ORCID

Affiliation:

1. Department of Statistics Ludwig‐Maximilians‐Universität München Munich Germany

2. Munich Center for Machine Learning Munich Germany

3. Research Center Trustworthy Data Science and Security TU Dortmund University Dortmund Germany

4. Department of Statistics TU Dortmund University Dortmund Germany

5. Institute for Medical Information Processing, Biometry and Epidemiology Ludwig‐Maximilians‐Universität München Munich Germany

6. Institute of Artificial Intelligence Leibniz University Hannover Germany

Abstract

AbstractMost machine learning algorithms are configured by a set of hyperparameters whose values must be carefully chosen and which often considerably impact performance. To avoid a time‐consuming and irreproducible manual process of trial‐and‐error to find well‐performing hyperparameter configurations, various automatic hyperparameter optimization (HPO) methods—for example, based on resampling error estimation for supervised machine learning—can be employed. After introducing HPO from a general perspective, this paper reviews important HPO methods, from simple techniques such as grid or random search to more advanced methods like evolution strategies, Bayesian optimization, Hyperband, and racing. This work gives practical recommendations regarding important choices to be made when conducting HPO, including the HPO algorithms themselves, performance evaluation, how to combine HPO with machine learning pipelines, runtime improvements, and parallelization.This article is categorized under: Algorithmic Development > Statistics Technologies > Machine Learning Technologies > Prediction

Funder

Bundesministerium für Bildung und Forschung

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3