Increased ethanol production by deletion of HAP4 in recombinant xylose-assimilating Saccharomyces cerevisiae

Author:

Matsushika Akinori1,Hoshino Tamotsu1

Affiliation:

1. grid.208504.b 0000 0001 2230 7538 Research Institute for Sustainable Chemistry National Institute of Advanced Industrial Science and Technology (AIST) 3-11-32 Kagamiyama, Higashi-Hiroshima 739-0046 Hiroshima Japan

Abstract

Abstract The Saccharomyces cerevisiae HAP4 gene encodes a transcription activator that plays a key role in controlling the expression of genes involved in mitochondrial respiration and reductive pathways. This work examines the effect of knockout of the HAP4 gene on aerobic ethanol production in a xylose-utilizing S. cerevisiae strain. A hap4-deleted recombinant yeast strain (B42-DHAP4) showed increased maximum concentration, production rate, and yield of ethanol compared with the reference strain MA-B42, irrespective of cultivation medium (glucose, xylose, or glucose/xylose mixtures). Notably, B42-DHAP4 was capable of producing ethanol from xylose as the sole carbon source under aerobic conditions, whereas no ethanol was produced by MA-B42. Moreover, the rate of ethanol production and ethanol yield (0.44 g/g) from the detoxified hydrolysate of wood chips was markedly improved in B42-DHAP4 compared to MA-B42. Thus, the results of this study support the view that deleting HAP4 in xylose-utilizing S. cerevisiae strains represents a useful strategy in ethanol production processes.

Funder

New Energy and Industrial Technology Development Organization (JP)

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Biotechnology,Bioengineering

Reference27 articles.

1. An overview of second generation biofuel technologies;Sims;Bioresour Technol,2010

2. Brazilian potential for biomass ethanol: challenge of using hexose and pentose co-fermenting yeast strains;Stumbuk;J Sci Ind Res,2008

3. Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives;Matsushika;Appl Microbiol Biotechnol,2009

4. Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism;Kim;Biotechnol Adv,2013

5. Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response;Jin;Appl Environ Microbiol,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3