Funder
National Key Research and Development Program of China
Research on key technology of mineral prediction based on geological big data analysis
Publisher
Springer Science and Business Media LLC
Subject
General Environmental Science
Reference107 articles.
1. Agterberg, F. P., & Bonham-Carter, G. F. (2005). Measuring the performance of mineral-potential maps. Natural Resources Research, 14(1), 1–17.
2. Agterberg, F. P., & Cheng, Q. (2002). Conditional independence test for weights-of-evidence modeling. Natural Resources Research, 11(4), 249–255.
3. Al-Anazi, A., & Gates, I. D. (2010). On the capability of support vector machines to classify lithology from well Logs. Natural Resources Research, 19(2), 125–139.
4. Brandmeier, M., Cabrera Zamora, I. G., Nykänen, V., & Middleton, M. (2020). Boosting for mineral prospectivity modeling: A new GIS toolbox. Natural Resources Research, 29(1), 71–88.
5. Cai, M., Cheng, D., Zhang, C., Zhu, R., Tang, Y., & Qu, J. (2017). Prediction of debris composition in Glutenite by machine learning method: A case study in Baikouquan formation of Well X723 in the NW margin of Junggar basin. Journal of xi’an Shiyou University (natural Science Edition), 32(5), 22–28. (in Chinese with English abstract).
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献