Boosting for Mineral Prospectivity Modeling: A New GIS Toolbox
Author:
Publisher
Springer Science and Business Media LLC
Subject
General Environmental Science
Link
http://link.springer.com/content/pdf/10.1007/s11053-019-09483-8.pdf
Reference67 articles.
1. Abedi, M., Norouzi, G.-H., & Bahroudi, A. (2012). Support vector machine for multi-classification of mineral prospectivity areas. Computers & Geosciences,46, 272–283.
2. Agterberg, F. P. (1992a). Combining indicator patterns in weights of evidence modelling for resource evaluation. Nonrenewable Resources,1, 39–50.
3. Agterberg, F. P. (1992b). Estimating the Probability of Occurrence of Mineral Deposits from Multiple Map Patterns. In H. Kürzl & D. F. Merriam (Eds.), Use of microcomputers in geology (pp. 73–92). Boston: Springer.
4. Al-Anazi, A., & Gates, I. D. (2010). A support vector machine algorithm to classify lithofacies and model permeability in heterogeneous reservoirs. Engineering Geology,114, 267–277.
5. Almodóvar, G. R., Sáez, R., Pons, J. M., Maestre, A., Toscano, M., & Pascual, E. (1997). Geology and genesis of the Aznalcóllar massive sulphide deposits, Iberian Pyrite Belt, Spain. Mineralium Deposita,33, 111–136.
Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Three-dimensional mineral prospectivity mapping based on natural language processing and random forests: A case study of the Xiyu diamond deposit, China;Ore Geology Reviews;2024-06
2. A novel hybrid ensemble model for mineral prospectivity prediction: A case study in the Malipo W-Sn mineral district, Yunnan Province, China;Ore Geology Reviews;2024-05
3. Prospectivity and Uncertainty Analysis of Tungsten Polymetallogenic Mineral Resources in the Nanling Metallogenic Belt, South China: A Comparative Study of AdaBoost, GBDT, and XgBoost Algorithms;Natural Resources Research;2024-04-10
4. Mineral prospectivity mapping using knowledge embedding and explainable ensemble learning: A case study of the Keeryin ore concentration in Sichuan, China;Ore Geology Reviews;2024-04
5. Machine learning-based field geological mapping: A new exploration of geological survey data acquisition strategy;Ore Geology Reviews;2024-03
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3