On the Capability of Support Vector Machines to Classify Lithology from Well Logs
Author:
Publisher
Springer Science and Business Media LLC
Subject
General Environmental Science
Link
http://link.springer.com/content/pdf/10.1007/s11053-010-9118-9.pdf
Reference28 articles.
1. Al-Anazi, A., and Gates, I. D., 2010a, Support vector regression for permeability prediction in a heterogeneous reservoir: a comparative study: SPE Reserv. Eval. Eng. (Accepted)
2. Al-Anazi, A., and Gates, I. D., 2010b, Support vector regression for porosity prediction in a heterogeneous reservoir: a comparative study: Comput. Geosci. (Accepted)
3. Al-Anazi, A., Gates, I. D., and Azaiez, J., 2009, Fuzzy logic data-driven permeability prediction for heterogeneous reservoirs, in Paper SPE 121159 Presented at the 2009 SPE EUROPEC/EAGE Annual Conference and Exhibition, 8–11 June, Amsterdam, The Netherlands
4. Amari, S., and Wu, S., 1999, Improving support vector machine classifiers by modifying kernel functions: Proc. Int. Conf. Neural Netw., v. 12, p. 783–789.
5. Burges, C. C., 1998, A tutorial on support vector machines for pattern recognition: Proc. Int. Conf. Data Mining Knowl. Discov., v. 2, no. 2, p. 121–167.
Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A Comprehensive review of data-driven approaches for forecasting production from unconventional reservoirs: best practices and future directions;Artificial Intelligence Review;2024-07-22
2. A borehole clustering based method for lithological identification using logging data;Earth Science Informatics;2024-06-26
3. Three-dimensional mineral prospectivity mapping based on natural language processing and random forests: A case study of the Xiyu diamond deposit, China;Ore Geology Reviews;2024-06
4. Prediction and effectiveness study of fracture distribution based on an artificial neural network technology and production performance data detection method: a case study of Ordovician carbonate formation in the Tahe oilfield, Tarim Basin;Petroleum Science and Technology;2024-03-18
5. A data driven approach to assess the petrophysical parametric sensitivity for lithology identification based on ensemble learning;Journal of Applied Geophysics;2024-03
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3