Microcracking in On-Chip Interconnect Stacks: FEM Simulation and Concept for Fatigue Test

Author:

Weitz StefanORCID,Clausner André,Zschech Ehrenfried

Abstract

AbstractThe semiconductor industry is continuing the scaling down of both device and on-chip interconnect features, for performance and economic reasons. This trend has implications for the design of guard ring structures, i.e. metallic non-functional structures in the back-end-of-line (BEoL) stack designed to be efficient to stop microcracks. In this work, we present a sample design for an in situ experiment to study mechanical degradation and failure mechanisms of crack stop structures in the BEoL stack, to ensure the mechanical robustness of microchips for future technology nodes. Additional finite element method (FEM) simulations provide supplementary understanding of the crack kinetics. To examine the effects of mechanical loading on crack stop elements of the BEoL stack, a novel sample geometry for an in situ fatigue experiment using x-ray microscopy was developed. The x-ray microscope (ZEISS Xradia 800 Ultra) enables high-resolution imaging of the 3D-patterned sample structures and defects such as microcracks. The tailored sample geometry allows the application of a tensile load to a BEoL specimen by a lever mechanism. The feasibility of the sample design is shown by mode-I loading of a pure interconnect sample. Post-mortem analysis by scanning electron microscopy (SEM), confirming planar microcrack propagation from the notch through the dielectric layer with small deflections of the crack path near cone shaped copper vias. FEM simulations focusing on the stress-strain fields around a crack tip indicate the beginning of copper plasticity as major mechanism starting the redirection of cracks due to resulting material compression in front of the obstacle.

Funder

Fraunhofer-Institut für Keramische Technologien und Systeme IKTS

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3