Abstract
AbstractWe prove $$L^p$$
L
p
-bounds for the bilinear Hilbert transform acting on functions valued in intermediate UMD spaces. Such bounds were previously unknown for UMD spaces that are not Banach lattices. Our proof relies on bounds on embeddings from Bochner spaces $$L^p(\mathbb {R};X)$$
L
p
(
R
;
X
)
into outer Lebesgue spaces on the time-frequency-scale space $$\mathbb {R}^3_+$$
R
+
3
.
Funder
Alexander von Humboldt-Stiftung
Publisher
Springer Science and Business Media LLC
Reference48 articles.
1. Adams, R.A., Fournier, J.J.F.: Sobolev spaces, 2 edn. In: Pure and Applied Mathematics, vol. 140. Elsevier, Amsterdam (2003)
2. Amenta, A., Uraltsev, G.: Banach-valued modulation invariant Carleson embeddings and outer-$$L^p$$ spaces: the Walsh case. J. Fourier Anal. Appl. 26, 1–54 (2020)
3. Amenta, A., Uraltsev, G.: Variational Carleson operators in UMD spaces (2020). arXiv:2003.02742
4. Benea, C., Muscalu, C.: Multiple vector-valued inequalities via the helicoidal method. Anal. PDE 9(8), 1931–1988 (2016)
5. Benea, C., Muscalu, C.: Quasi-Banach valued inequalities via the helicoidal method. J. Funct. Anal. 273(4), 1295–1353 (2017)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献