Author:
Amenta Alex,Uraltsev Gennady
Abstract
AbstractWe prove modulation invariant embedding bounds from Bochner spaces $$L^p(\mathbb {W};X)$$
L
p
(
W
;
X
)
on the Walsh group to outer-$$L^p$$
L
p
spaces on the Walsh extended phase plane. The Banach space X is assumed to be UMD and sufficiently close to a Hilbert space in an interpolative sense. Our embedding bounds imply $$L^p$$
L
p
bounds and sparse domination for the Banach-valued tritile operator, a discrete model of the Banach-valued bilinear Hilbert transform.
Funder
Rheinische Friedrich-Wilhelms-Universität Bonn
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,General Mathematics,Analysis
Reference39 articles.
1. Amenta, A., Uraltsev, G.: The bilinear Hilbert transform in UMD spaces. arXiv:1909.06416 (2019)
2. Benea, C., Muscalu, C.: Multiple vector-valued inequalities via the helicoidal method. Anal. PDE 9(8), 1931–1988 (2016)
3. Benea, C., Muscalu, C.: Quasi-Banach valued inequalities via the helicoidal method. J. Funct. Anal. 273(4), 1295–1353 (2017)
4. Grundlehren der Mathematischen Wissenschaften;J Bergh,1976
5. Bourgain, J.: Some remarks on Banach spaces in which martingale difference sequences are unconditional. Ark. Mat. 21(2), 163–168 (1983)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献