Local and multilinear noncommutative de Leeuw theorems

Author:

Caspers Martijn,Janssens Bas,Krishnaswamy-Usha Amudhan,Miaskiwskyi Lukas

Abstract

AbstractLet $$\Gamma < G$$ Γ < G be a discrete subgroup of a locally compact unimodular group G. Let $$m\in C_b(G)$$ m C b ( G ) be a p-multiplier on G with $$1 \le p < \infty $$ 1 p < and let $$T_{m}: L_p({\widehat{G}}) \rightarrow L_p({\widehat{G}})$$ T m : L p ( G ^ ) L p ( G ^ ) be the corresponding Fourier multiplier. Similarly, let $$T_{m \vert _\Gamma }: L_p({\widehat{\Gamma }}) \rightarrow L_p({\widehat{\Gamma }})$$ T m | Γ : L p ( Γ ^ ) L p ( Γ ^ ) be the Fourier multiplier associated to the restriction $$m|_{\Gamma }$$ m | Γ of m to $$\Gamma $$ Γ . We show that $$\begin{aligned} c( {{\,\textrm{supp}\,}}( m|_{\Gamma } ) ) \Vert T_{m \vert _\Gamma }: L_p({\widehat{\Gamma }}) \rightarrow L_p({\widehat{\Gamma }}) \Vert \le \Vert T_{m }: L_p({\widehat{G}}) \rightarrow L_p({\widehat{G}}) \Vert , \end{aligned}$$ c ( supp ( m | Γ ) ) T m | Γ : L p ( Γ ^ ) L p ( Γ ^ ) T m : L p ( G ^ ) L p ( G ^ ) , for a specific constant $$0 \le c(U) \le 1$$ 0 c ( U ) 1 that is defined for every $$U \subseteq \Gamma $$ U Γ . The function c quantifies the failure of G to admit small almost $$\Gamma $$ Γ -invariant neighbourhoods and can be determined explicitly in concrete cases. In particular, $$c(\Gamma ) =1$$ c ( Γ ) = 1 when G has small almost $$\Gamma $$ Γ -invariant neighbourhoods. Our result thus extends the de Leeuw restriction theorem from Caspers et al. (Forum Math Sigma 3(e21):59, 2015) as well as de Leeuw’s classical theorem (Ann Math 81(2):364–379, 1965). For real reductive Lie groups G we provide an explicit lower bound for c in terms of the maximal dimension d of a nilpotent orbit in the adjoint representation. We show that $$c(B_\rho ^G) \ge \rho ^{-d/4}$$ c ( B ρ G ) ρ - d / 4 where $$B_\rho ^G$$ B ρ G is the ball of $$g\in G$$ g G with $$\Vert {{\,\textrm{Ad}\,}}_g \Vert < \rho $$ Ad g < ρ . We further prove several results for multilinear Fourier multipliers. Most significantly, we prove a multilinear de Leeuw restriction theorem for pairs $$\Gamma <G$$ Γ < G with $$c(\Gamma ) = 1$$ c ( Γ ) = 1 . We also obtain multilinear versions of the lattice approximation theorem, the compactification theorem and the periodization theorem. Consequently, we are able to provide the first examples of bilinear multipliers on nonabelian groups.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3