Author:
Caspers Martijn,Janssens Bas,Krishnaswamy-Usha Amudhan,Miaskiwskyi Lukas
Abstract
AbstractLet $$\Gamma < G$$
Γ
<
G
be a discrete subgroup of a locally compact unimodular group G. Let $$m\in C_b(G)$$
m
∈
C
b
(
G
)
be a p-multiplier on G with $$1 \le p < \infty $$
1
≤
p
<
∞
and let $$T_{m}: L_p({\widehat{G}}) \rightarrow L_p({\widehat{G}})$$
T
m
:
L
p
(
G
^
)
→
L
p
(
G
^
)
be the corresponding Fourier multiplier. Similarly, let $$T_{m \vert _\Gamma }: L_p({\widehat{\Gamma }}) \rightarrow L_p({\widehat{\Gamma }})$$
T
m
|
Γ
:
L
p
(
Γ
^
)
→
L
p
(
Γ
^
)
be the Fourier multiplier associated to the restriction $$m|_{\Gamma }$$
m
|
Γ
of m to $$\Gamma $$
Γ
. We show that $$\begin{aligned} c( {{\,\textrm{supp}\,}}( m|_{\Gamma } ) ) \Vert T_{m \vert _\Gamma }: L_p({\widehat{\Gamma }}) \rightarrow L_p({\widehat{\Gamma }}) \Vert \le \Vert T_{m }: L_p({\widehat{G}}) \rightarrow L_p({\widehat{G}}) \Vert , \end{aligned}$$
c
(
supp
(
m
|
Γ
)
)
‖
T
m
|
Γ
:
L
p
(
Γ
^
)
→
L
p
(
Γ
^
)
‖
≤
‖
T
m
:
L
p
(
G
^
)
→
L
p
(
G
^
)
‖
,
for a specific constant $$0 \le c(U) \le 1$$
0
≤
c
(
U
)
≤
1
that is defined for every $$U \subseteq \Gamma $$
U
⊆
Γ
. The function c quantifies the failure of G to admit small almost $$\Gamma $$
Γ
-invariant neighbourhoods and can be determined explicitly in concrete cases. In particular, $$c(\Gamma ) =1$$
c
(
Γ
)
=
1
when G has small almost $$\Gamma $$
Γ
-invariant neighbourhoods. Our result thus extends the de Leeuw restriction theorem from Caspers et al. (Forum Math Sigma 3(e21):59, 2015) as well as de Leeuw’s classical theorem (Ann Math 81(2):364–379, 1965). For real reductive Lie groups G we provide an explicit lower bound for c in terms of the maximal dimension d of a nilpotent orbit in the adjoint representation. We show that $$c(B_\rho ^G) \ge \rho ^{-d/4}$$
c
(
B
ρ
G
)
≥
ρ
-
d
/
4
where $$B_\rho ^G$$
B
ρ
G
is the ball of $$g\in G$$
g
∈
G
with $$\Vert {{\,\textrm{Ad}\,}}_g \Vert < \rho $$
‖
Ad
g
‖
<
ρ
. We further prove several results for multilinear Fourier multipliers. Most significantly, we prove a multilinear de Leeuw restriction theorem for pairs $$\Gamma <G$$
Γ
<
G
with $$c(\Gamma ) = 1$$
c
(
Γ
)
=
1
. We also obtain multilinear versions of the lattice approximation theorem, the compactification theorem and the periodization theorem. Consequently, we are able to provide the first examples of bilinear multipliers on nonabelian groups.
Funder
Nederlandse Organisatie voor Wetenschappelijk Onderzoek
Publisher
Springer Science and Business Media LLC
Reference63 articles.
1. Amenta, A., Uraltsev, G.: The bilinear Hilbert transform in UMD spaces. Math. Ann. 378(3–4), 1129–1221 (2020)
2. Barbasch, D., Vogan, D.A., Jr.: The local structure of characters. J. Funct. Anal. 37(1), 27–55 (1980)
3. Bekka, B., de la Harpe, P., Valette, A.: Kazhdan’s property (T), New Mathematical Monographs, 11. Cambridge University Press, Cambridge, 2008. xiv+472 pp
4. Blasco, O.: Bilinear multipliers and transference. Int. J. Math. Math. Sci. 4, 545–554 (2005)
5. Bourbaki, N.: Lie groups and Lie algebras. Chapters 7–9. Elements of Mathematics (Berlin). Springer-Verlag, Berlin (2005)