Abstract
AbstractStone artifacts are critical for investigating the evolution of hominin behavior—they are among our only proxies for hominin behavior in deep time. Hominin cognition and skill are often inferred by reconstructing the technical decisions hominins made throughout the knapping process. However, despite many advancements in understanding how hominins knapped, some of the key factors involved in past flake production cannot be easily/readily derived from stone artifacts. In particular, the angle at which the knapper strikes the hammer against the core to remove the flake, or the angle of blow, is a key component of the knapping process that has up to now remained unmeasurable on archeological assemblages. In this study, we introduce a new method for estimating the angle of blow from the ventral surface of flakes. This method was derived from a controlled experiment that explicitly connects fracture mechanics to flake variability. We find that a feature of the flake’s bulb of percussion, what we call the bulb angle, is a measurable indicator of the angle of blow. Our experimental finding is further validated in two additional datasets from controlled and replicative knapping experiments. These results demonstrate the utility of continuing to link flake variation with technical decision-making to fracture mechanics. In addition, they also provide a useful and relatively simple means to capture a currently invisible aspect of hominin stone tool production behavior.
Funder
H2020 European Research Council
Leakey Foundation
Eberhard Karls Universität Tübingen
Publisher
Springer Science and Business Media LLC
Subject
Archeology,Anthropology,Archeology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献