Automatic analysis of the continuous edges of stone tools reveals fundamental handaxe variability

Author:

Muller Antoine,Sharon Gonen,Grosman Leore

Abstract

AbstractThe edges of stone tools have significant technological and functional implications. The nature of these edges–their sharpness, whether they are concave or convex, and their asymmetry–reflect how they were made and how they could be used. Similarly, blunt portions of a tool’s perimeter hint at how they could have been grasped or hafted and in which directions force could be applied. However, due to the difficulty in accurately measuring the complex 3D geometry of tool edges with traditional methods, their attributes are often overlooked. When they are analyzed, they have traditionally been assessed with visual qualitative categories or unreliable physical measurements. We introduce new computational 3D methods for automatically and repeatably measuring key attributes of stone tool edges. These methods allow us to automatically identify the 3D perimeter of tools, segment this perimeter according to changes in edge angles, and measure these discrete edge segments with a range of metrics. We test this new computational toolkit on a large sample of 3D models of handaxes from the later Acheulean of the southern Levant. Despite these handaxes being otherwise technologically and morphologically similar, we find marked differences in the amount of knapped outline, edge angle, and the concavity of their edges. We find many handaxes possess blunt portions of perimeter, suitable for grasping, and some handaxes even possess more than one discrete sharp edge. Among our sample, sites with longer occupations and more diverse toolkits possessed handaxes with more diverse edges. Above all, this paper offers new methods for computing the complex 3D geometry of stone tool edges that could be applied to any number of artifact types. These methods are fully automated, allowing the analysis and visualization of entire assemblages.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3