Simulation of rainfall-runoff process using an artificial neural network (ANN) and field plots data
Author:
Publisher
Springer Science and Business Media LLC
Subject
Atmospheric Science
Link
https://link.springer.com/content/pdf/10.1007/s00704-021-03817-4.pdf
Reference68 articles.
1. Adamowski J, Chan HF, Prasher SO, Sharda VN (2012) Comparison of multivariate adaptive regression splines with coupled wavelet transform artificial neural networks for runoff forecasting in Himalayan micro-watersheds with limited data. J Hydroinform 14(3):731–744
2. Alizadeh MJ, Kavianpour MR, Kisi O, Nourani V (2017) A new approach for simulating and forecasting the rainfall-runoff process within the next two months. J Hydrol 548:588–597
3. Anctil F, Rat A (2005) Evaluation of neural networks streamflow forecasting on 47 watersheds. J Hydrol Eng ASCE 10(1):85–88. https://doi.org/10.1061/(ASCE)1084-0699(2005)10:1(85)
4. Ascough JC, Baffaut C, Nearing MA, Liu BY (1997) The WEPP basin model: I. Hydrology and erosion. Trans ASAE 40(4):921–933
5. Cattan P, Ruy SM, Cabidoche YM, Findeling A, Desbois P, Charlier JB (2009) Effect on runoff of rainfall redistribution by the impluvium-shaped canopy of banana cultivated on an Andosol with a high infiltration rate. J Hydrol 368(1):251–261
Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Assessing rainfall-runoff models for climate change: simple and differential split-sample tests for conceptual and artificial intelligence models;Hydrological Sciences Journal;2024-05-18
2. Application of a hybrid algorithm of LSTM and Transformer based on random search optimization for improving rainfall-runoff simulation;Scientific Reports;2024-05-16
3. A systematic review and meta-analysis of artificial neural network, machine learning, deep learning, and ensemble learning approaches in field of geotechnical engineering;Neural Computing and Applications;2024-05-13
4. Interpretable and explainable hybrid model for daily streamflow prediction based on multi-factor drivers;Environmental Science and Pollution Research;2024-05-06
5. Rainfall-runoff modelling – a comparison of Artificial Neural Networks (ANNs) and Hydrologic Engineering Centre-Hydrologic Modelling System (HEC-HMS);ISH Journal of Hydraulic Engineering;2024-05-06
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3