Nucleotide metabolism in common bean pods during seed filling phase reveals the essential role of seed coats

Author:

Díaz-Baena Mercedes,Delgado-García Elena,deRave-Prieto Inés G.,Gálvez-Valdivieso GregorioORCID,Piedras PedroORCID

Abstract

AbstractCommon bean is a legume with high demand for human consumption and with high protein content on its seeds. The seed filling stage is a crucial step to obtain high-quality seeds with a good level of nutrients. For this, it is necessary for a correct communication between the different seed compartments. Nucleotides are essential components with nitrogen and phosphorous on its molecules, and its metabolism in seed development has not been studied in detail. In this manuscript, we have studied nucleotide metabolism in common bean pods during seed filling stage at pod valves, seed coats, and embryos. Nuclease and ribonuclease activities were assayed as nucleotide-generating enzymes, and nucleotidase, nucleosidase, and allantoinase as nucleotide-degrading activities. Nuclease was predominant in seed coats whereas ribonuclease was equally determined in seed coats and valves, although with differences in the three ribonucleases determined (16, 17, and 19 kDa). Nucleotidase and nucleosidase activities were detected in the three pods parts, and differently to nucleic degrading activities with significant activity in embryos. The relative expression of gene families coding for all these activities (S1 nuclease, S-like T2 ribonuclease, nucleotidase, nucleosidase and allantoinase) in the three pods parts was also studied. We have found the highest level of expression for some members of each family in seed coats. The allantoinase data suggest that nucleotide might be fully degraded in valves and seed coats but not in embryos. Overall, the data presented allow to conclude that there is an intense nucleotide metabolism in fruits during the seed filling stage with an especial involvement of seed coats in the process.

Funder

Ministerio de Ciencia e Innovación

Consejería de Economía, Conocimiento, Empresas y Universidad, Junta de Andalucía

Fundación Torres Gutiérrez.

Universidad de Córdoba

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3