Roadmap for Polarity Lexicon Learning and Resources: A Survey

Author:

Sanagar Swati,Gupta Deepa

Publisher

Springer International Publishing

Reference52 articles.

1. Andreevskaia A, Bergler S (2006). Mining WordNet for fuzzy sentiment: Sentiment tag extraction from WordNet glosses. In: EACL’06: Proceedings of the European Chapter of the Association for Computational Linguistics, vol. 6, pp. 209-16.

2. Anthony A, Gamon M (2005). Customizing sentiment classifiers to new domains: A case study. In: Proceedings of international conference on recent advances in natural language processing, vol. 1(3.1), Bulgaria, pp. 2-1.

3. Baccianella S, Esuli A, Sebastiani F (2010). SentiWordNet 3.0: An enhanced lexical resource for Sentiment Analysis and Opinion Mining. In: Proceedings of the seventh conference on international Language Resources and Evaluation, vol. 10, pp. 2200-4.

4. Blitzer J, Dredze M, Pereira F (2007) Biographies, Bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification In: Proceedings of 45th annual meeting of the Association of Computational Linguistics, Prague, Czech Republic, June 2007, pp. 440–47.

5. Bradley MM, Lang PJ (1999). Affective norms for English words (ANEW): Instruction manual and affective ratings. Technical Report C-1, Center for Research in Psychophysiology, University of Florida.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A comprehensive review of visual–textual sentiment analysis from social media networks;Journal of Computational Social Science;2024-09-08

2. A comprehensive survey on sentiment analysis: Approaches, challenges and trends;Knowledge-Based Systems;2021-08

3. Multidomain Sentiment Lexicon Learning Using Genre-Seed Embeddings;Communications in Computer and Information Science;2021

4. Automated genre-based multi-domain sentiment lexicon adaptation using unlabeled data;Journal of Intelligent & Fuzzy Systems;2020-05-29

5. An Efficient Text Labeling Framework Using Active Learning Model;Intelligent Systems, Technologies and Applications;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3