Automated genre-based multi-domain sentiment lexicon adaptation using unlabeled data
Author:
Affiliation:
1. Department of Computer Science & Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Bengaluru
Publisher
IOS Press
Subject
Artificial Intelligence,General Engineering,Statistics and Probability
Reference34 articles.
1. Araque O. , Guerini M. , Strapparava C. and Iglesias C.A. , Neural domain adaptation of sentiment lexicons. Seventh international conference on affective computingand intelligent interaction workshops and demos 2017, pp. 105–110.
2. Blitzer J. , Dredze M. and Pereira F. , Biographies, Bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification In: Proceedings of 45th annual meeting of the Association of Computational Linguistics, Prague, Czech Republic, 2007, pp. 440–47.
3. Clustering by passing messages between data points;Brendan;Science,2007
4. Choi Y. and Cardie C. , Adapting a polarity lexicon using integer linear programming for domain-specific sentiment classification. In proceedings of the conference on Empirical Methods in Natural Language Processing, 2009, pp. 590–598.
5. Word association norms, mutual information, and lexicography;Church;Computational Linguist,1990
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Automatic Domain-Adaptive Sentiment Analysis with SentiMap;International Journal of Semantic Computing;2024-01-30
2. SentiMap: Domain-Adaptive Geo-Spatial Sentiment Analysis;2023 IEEE 17th International Conference on Semantic Computing (ICSC);2023-02
3. Support towards emergency event processing via fine-grained analysis on users' expressions;Aslib Journal of Information Management;2023-01-05
4. Gradient Boosting Approach for Sentiment Analysis for Job Recommendation and Candidate Profiling;2022 IEEE Bombay Section Signature Conference (IBSSC);2022-12-08
5. An enhanced guided LDA model augmented with BERT based semantic strength for aspect term extraction in sentiment analysis;Knowledge-Based Systems;2022-06
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3