Multidomain Sentiment Lexicon Learning Using Genre-Seed Embeddings
Author:
Sanagar SwatiORCID, Gupta DeepaORCID
Publisher
Springer Singapore
Reference35 articles.
1. Kumar, S.S., Kumar, M.A., Soman, K.P., Poornachandran, P.: Dynamic mode-based feature with random mapping for sentiment analysis. In: Thampi, S. et al. (eds.) Intelligent Systems, Technologies and Applications, Singapore, vol. 910, p. 15 (2020). https://doi.org/10.1007/978-981-13-6095-4_1 2. Shalini, K., Ganesh, H.B., Kumar, M.A., Soman, K.P.: Sentiment analysis for code-mixed Indian social media text with distributed representation. In: 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 1126–1131. IEEE (2018) 3. Sanagar, S., Gupta, D.: Adaptation of multi-domain corpus learned seeds and polarity lexicon for sentiment analysis. In: Proceedings of the International Conference on Computing and Network Communications, pp. 60–68. IEEE (2015) 4. Fares, M., Moufarrej, A., Jreij, E., Tekli, J., Grosky, W.: Unsupervised word-level affect analysis and propagation in a lexical knowledge graph. Knowl.-Based Syst. 165, 432–459 (2019) 5. Sanagar, S., Gupta, D.: Roadmap for polarity Lexicon learning and resources: A survey. In: Rodriguez, J.M.C., Mitra, S., Thampi, S.M., El-Alfy, E.-S. (eds.) Intelligent Systems Technologies and Applications 2016, pp. 647–663. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47952-1_52
|
|