A framework for multi-core schedulability analysis accounting for resource stress and sensitivity

Author:

Davis Robert I.ORCID,Griffin David,Bate Iain

Abstract

AbstractTiming verification of multi-core systems is complicated by contention for shared hardware resources between co-running tasks on different cores. This paper introduces the Multi-core Resource Stress and Sensitivity (MRSS) task model that characterizes how much stress each task places on resources and how much it is sensitive to such resource stress. This model facilitates a separation of concerns, thus retaining the advantages of the traditional two-step approach to timing verification (i.e. timing analysis followed by schedulability analysis). Response time analysis is derived for the MRSS task model, providing efficient context-dependent and context independent schedulability tests for both fixed priority preemptive and fixed priority non-preemptive scheduling. Dominance relations are derived between the tests, along with complexity results, and proofs of optimal priority assignment policies. The MRSS task model is underpinned by a proof-of-concept industrial case study. The problem of task allocation is considered in the context of the MRSS task model, with Simulated Annealing shown to provide an effective solution.

Funder

Innovate UK

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Computer Science Applications,Modeling and Simulation,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the QNX IPC: Assessing Predictability for Local and Distributed Real-Time Systems;2023 IEEE 29th Real-Time and Embedded Technology and Applications Symposium (RTAS);2023-05

2. Mixed Criticality on Multi-cores Accounting for Resource Stress and Resource Sensitivity;Proceedings of the 30th International Conference on Real-Time Networks and Systems;2022-06-07

3. Planificación de sistemas de tiempo real crí­tico mediante técnicas no convencionales;Revista Iberoamericana de Automática e Informática industrial;2022-03-22

4. A framework for multi-core schedulability analysis accounting for resource stress and sensitivity;Real-Time Systems;2022-02-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3