Acid-assisted extraction and hydrolysis of inulin from chicory roots to obtain fructose-enriched extracts

Author:

Stökle KatrinORCID,Jung Dennis,Kruse Andrea

Abstract

Abstract Chicory (Cichorium intybus var. foliosum) roots are an agricultural residue and a low cost feedstock for the production of the platform chemical 5-Hxdroxymethylfurfural (HMF). In a first step, inulin and fructose have to be extracted from the roots. The resulting aqueous extract represents the starting material for the HMF production. In the reaction to HMF, inulin has to be hydrolyzed first to fructose. For this reason, two methods to increase the fructose content in these extracts before the reaction were investigated. This was conducted within the framework of integrating acid hydrolysis into a biorefinery process for HMF production. The first method (one-step process) was acid-assisted extraction to directly hydrolyze inulin in the course of the extraction process. Chicory roots were extracted at 60 and 80 °C at pH 2 and 4 using buffer solutions. The second approach (two-step process) was aqueous extraction at neutral pH followed by nitric acid hydrolysis of the extract at 60 and 80 °C under reduced pH. It was found that in the first approach, the pH of 2 led to a fivefold increase in the fructose content of the extract, resulting from inulin hydrolysis and corresponding to 56% of theoretical fructose yield. For the second approach, it was possible to achieve complete hydrolysis at pH below 2.5 and at 80 °C. Separating extraction and hydrolysis was found to be more suitable in terms of including this process step into a biorefinery concept for HMF production. It was possible to reduce the initial inulin content by 95%.

Funder

Fachagentur Nachwachsende Rohstoffe

Publisher

Springer Science and Business Media LLC

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3