On the divergence theorem for submanifolds of Euclidean vector spaces within the theory of second-gradient continua

Author:

Capobianco Giuseppe,Eugster Simon R.ORCID

Abstract

AbstractIn the theory of second-gradient continua, the internal virtual work functional can be considered as a second-order distribution in which the virtual displacements take the role of test functions. In its easiest representation, the internal virtual work functional is represented as a volume integral over a subset of the three-dimensional Euclidean vector space and involves first and second derivatives of the virtual displacements. In this paper, we show by an iterative integration by parts procedure how an alternative representation of such a functional can be obtained when the integration domain is a subset that contains also edges and wedges. Since this procedure strongly relies on the divergence theorem for submanifolds of a Euclidean vector space, it is a main goal to derive this divergence theorem for submanifolds starting from Stokes’ theorem for manifolds. To that end, results from Riemannian geometry are gathered and applied to the submanifold case.

Funder

Universität Stuttgart

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,General Physics and Astronomy,General Mathematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3