Analytical continuum mechanics à la Hamilton–Piola least action principle for second gradient continua and capillary fluids

Author:

Auffray N1,dell’Isola F2,Eremeyev VA3,Madeo A4,Rosi G5

Affiliation:

1. Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, Marne-la-Vallée, France

2. Dipartimento di Ingegneria Strutturale e Geotecnica, Università di Roma La Sapienza, Roma, Italy

3. Institut für Mechanik, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany South Scientific Center of RASci and South Federal University, Rostov on Don, Russia

4. Laboratoire de Génie Civil et Ingénierie Environnementale, Université de Lyon–INSA, Villeurbanne Cedex, France

5. International Research Center on Mathematics and Mechanics of Complex System MeMoCS, Università degli studi dell’Aquila, Cisterna di Latina, Italy

Abstract

In this paper a stationary action principle is proved to hold for capillary fluids, i.e. fluids for which the deformation energy has the form suggested, starting from molecular arguments. We remark that these fluids are sometimes also called Korteweg–de Vries or Cahn–Allen fluids. In general, continua whose deformation energy depends on the second gradient of placement are called second gradient (or Piola–Toupin, Mindlin, Green–Rivlin, Germain or second grade) continua. In the present paper, a material description for second gradient continua is formulated. A Lagrangian action is introduced in both the material and spatial descriptions and the corresponding Euler–Lagrange equations and boundary conditions are found. These conditions are formulated in terms of an objective deformation energy volume density in two cases: when this energy is assumed to depend on either C and ∇ C or on C−1 and ∇ C−1, where C is the Cauchy–Green deformation tensor. When particularized to energies which characterize fluid materials, the capillary fluid evolution conditions are recovered. A version of Bernoulli’s law valid for capillary fluids is found and useful kinematic formulas for the present variational formulation are proposed. Historical comments about Gabrio Piola’s contribution to analytical continuum mechanics are also presented.

Publisher

SAGE Publications

Subject

Mechanics of Materials,General Materials Science,General Mathematics

Reference164 articles.

1. Completing Book II of Archimedes’s On Floating Bodies

2. Poisson S-D. Mémoire sur l’équilibre et le mouvement des Corps solides élastiques. Mémoires de l’Institut de France T. VIII. p. 326, 400.

Cited by 225 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3