Scalable and Reliable Multi-dimensional Sensor Data Aggregation in Data Streaming Architectures

Author:

Henning SörenORCID,Hasselbring WilhelmORCID

Abstract

AbstractEver-increasing amounts of data and requirements to process them in real time lead to more and more analytics platforms and software systems designed according to the concept of stream processing. A common area of application is processing continuous data streams from sensors, for example, IoT devices or performance monitoring tools. In addition to analyzing pure sensor data, analyses of data for entire groups of sensors often need to be performed. Therefore, data streams of the individual sensors have to be continuously aggregated to a data stream for a group. Motivated by a real-world application scenario of analyzing power consumption in Industry 4.0 environments, we propose that such a stream aggregation approach has to allow for aggregating sensors in hierarchical groups, support multiple such hierarchies in parallel, provide reconfiguration at runtime, and preserve the scalability and reliability qualities of stream processing techniques. We propose a stream processing architecture fulfilling these requirements, which can be integrated into existing big data architectures. As all state-of-the-art stream processing frameworks have to handle a trade-off between latency, resource-efficiency, and correctness, our proposed architecture can be configured for low latency and resource-efficient computation or for always ensuring correct results. To assist adopters in choosing appropriate configuration options, we provide an experimental comparison. We present a pilot implementation of our proposed architecture and show how it is used in industry. Furthermore, in experimental evaluations we show that our solution scales linearly with the amount of sensors and provides adequate reliability in the presence of faults.

Funder

Bundesministerium für Bildung und Forschung

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3