Affiliation:
1. Politecnico di Milano, Italy
Abstract
A large number of distributed applications requires continuous and timely processing of information as it flows from the periphery to the center of the system. Examples include intrusion detection systems which analyze network traffic in real-time to identify possible attacks; environmental monitoring applications which process raw data coming from sensor networks to identify critical situations; or applications performing online analysis of stock prices to identify trends and forecast future values.
Traditional DBMSs, which need to store and index data before processing it, can hardly fulfill the requirements of timeliness coming from such domains. Accordingly, during the last decade, different research communities developed a number of tools, which we collectively call
Information flow processing (IFP) systems
, to support these scenarios. They differ in their system architecture, data model, rule model, and rule language. In this article, we survey these systems to help researchers, who often come from different backgrounds, in understanding how the various approaches they adopt may complement each other.
In particular, we propose a general, unifying model to capture the different aspects of an IFP system and use it to provide a complete and precise classification of the systems and mechanisms proposed so far.
Publisher
Association for Computing Machinery (ACM)
Subject
General Computer Science,Theoretical Computer Science
Cited by
546 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献