A configurable method for benchmarking scalability of cloud-native applications

Author:

Henning SörenORCID,Hasselbring Wilhelm

Abstract

AbstractCloud-native applications constitute a recent trend for designing large-scale software systems. However, even though several cloud-native tools and patterns have emerged to support scalability, there is no commonly accepted method to empirically benchmark their scalability. In this study, we present a benchmarking method, allowing researchers and practitioners to conduct empirical scalability evaluations of cloud-native applications, frameworks, and deployment options. Our benchmarking method consists of scalability metrics, measurement methods, and an architecture for a scalability benchmarking tool, particularly suited for cloud-native applications. Following fundamental scalability definitions and established benchmarking best practices, we propose to quantify scalability by performing isolated experiments for different load and resource combinations, which asses whether specified service level objectives (SLOs) are achieved. To balance usability and reproducibility, our benchmarking method provides configuration options, controlling the trade-off between overall execution time and statistical grounding. We perform an extensive experimental evaluation of our method’s configuration options for the special case of event-driven microservices. For this purpose, we use benchmark implementations of the two stream processing frameworks Kafka Streams and Flink and run our experiments in two public clouds and one private cloud. We find that, independent of the cloud platform, it only takes a few repetitions (≤ 5) and short execution times (≤ 5 minutes) to assess whether SLOs are achieved. Combined with our findings from evaluating different search strategies, we conclude that our method allows to benchmark scalability in reasonable time.

Funder

Christian-Albrechts-Universität zu Kiel

Publisher

Springer Science and Business Media LLC

Subject

Software

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Comprehensive Benchmarking Analysis of Fault Recovery in Stream Processing Frameworks;Proceedings of the 18th ACM International Conference on Distributed and Event-based Systems;2024-06-24

2. StreamBed: Capacity Planning for Stream Processing;Proceedings of the 18th ACM International Conference on Distributed and Event-based Systems;2024-06-24

3. ShuffleBench: A Benchmark for Large-Scale Data Shuffling Operations with Distributed Stream Processing Frameworks;Proceedings of the 15th ACM/SPEC International Conference on Performance Engineering;2024-05-07

4. Benchmarking scalability of stream processing frameworks deployed as microservices in the cloud;Journal of Systems and Software;2024-02

5. An Initial Insight into Measuring Quality in Cloud-Native Architectures;Communications in Computer and Information Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3