Detecting Positive Selection in Populations Using Genetic Data

Author:

Koropoulis Angelos,Alachiotis Nikolaos,Pavlidis Pavlos

Abstract

AbstractHigh-throughput genomic sequencing allows to disentangle the evolutionary forces acting in populations. Among evolutionary forces, positive selection has received a lot of attention because it is related to the adaptation of populations in their environments, both biotic and abiotic. Positive selection, also known as Darwinian selection, occurs when an allele is favored by natural selection. The frequency of the favored allele increases in the population and, due to genetic hitchhiking, neighboring linked variation diminishes, creating so-called selective sweeps. Such a process leaves traces in genomes that can be detected in a future time point. Detecting traces of positive selection in genomes is achieved by searching for signatures introduced by selective sweeps, such as regions of reduced variation, a specific shift of the site frequency spectrum, and particular linkage disequilibrium (LD) patterns in the region. A variety of approaches can be used for detecting selective sweeps, ranging from simple implementations that compute summary statistics to more advanced statistical approaches, e.g., Bayesian approaches, maximum-likelihood-based methods, and machine learning methods. In this chapter, we discuss selective sweep detection methodologies on the basis of their capacity to analyze whole genomes or just subgenomic regions, and on the specific polymorphism patterns they exploit as selective sweep signatures. We also summarize the results of comparisons among five open-source software releases (SweeD, SweepFinder, SweepFinder2, OmegaPlus, and RAiSD) regarding sensitivity, specificity, and execution times. Furthermore, we test and discuss machine learning methods and present a thorough performance analysis. In equilibrium neutral models or mild bottlenecks, most methods are able to detect selective sweeps accurately. Methods and tools that rely on linkage disequilibrium (LD) rather than single SNPs exhibit higher true positive rates than the site frequency spectrum (SFS)-based methods under the model of a single sweep or recurrent hitchhiking. However, their false positive rate is elevated when a misspecified demographic model is used to build the distribution of the statistic under the null hypothesis. Both LD and SFS-based approaches suffer from decreased accuracy on localizing the true target of selection in bottleneck scenarios. Furthermore, we present an extensive analysis of the effects of gene flow on selective sweep detection, a problem that has been understudied in selective sweep literature.

Publisher

Springer US

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3