Pervasive selective sweeps across human gut microbiomes

Author:

Wolff Richard,Garud Nandita R.

Abstract

AbstractThe human gut microbiome is composed of a highly diverse consortia of species which are continually evolving within and across hosts. The ability to identify adaptations common to many host gut microbiomes would not only reveal shared selection pressures across hosts, but also key drivers of functional differentiation of the microbiome that may affect community structure and host traits. However, to date there has not been a systematic scan for adaptations that have spread across host microbiomes. Here, we develop a novel selection scan statistic, named the integrated linkage disequilibrium score (iLDS), that can detect the spread of adaptive haplotypes across host microbiomes via migration and horizontal gene transfer. Specifically, iLDS leverages signals of hitchhiking of deleterious variants with the beneficial variant, a common feature of adaptive evolution. We find that iLDS is capable of detecting simulated and known cases of selection, and moreover is robust to potential confounders that can also elevate LD. Application of the statistic to ∼20 common commensal gut species from a large cohort of healthy, Western adults reveals pervasive spread of selected alleles across human microbiomes mediated by horizontal gene transfer. Among the candidate selective sweeps recovered by iLDS is an enrichment for genes involved in the metabolism of maltodextrin, a synthetic starch that has recently become a widespread component of Western diets. In summary, we demonstrate that selective sweeps across host microbiomes are a common feature of the evolution of the human gut microbiome.

Publisher

Cold Spring Harbor Laboratory

Reference62 articles.

1. Evolutionary dynamics of bacteria in the gut microbiome within and across hosts

2. Adaptive Evolution within Gut Microbiomes of Healthy People

3. A library of human gut bacterial isolates paired with longitudinal multiomics data enables mechanistic microbiome research;Nature medicine,2019

4. Tracking microbial evolution in the human gut using Hi-C reveals extensive horizontal gene transfer, persistence and adaptation;Nature microbiology,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3