High-pressure phase relations in the system Fe–Ni–Cu–S up to 14 GPa: implications for the stability of sulfides in the earth’s upper mantle

Author:

Beyer ChristopherORCID,Bissbort Thilo,Hartmann Rebecca,Berndt Jasper,Klemme Stephan,Fonseca Raúl O. C.

Abstract

AbstractBase metal sulfides (Fe–Ni–Cu–S) are ubiquitous phases in mantle and subduction-related lithologies. Sulfides in the mantle often melt incongruently, which leads to the production of a Cu–Ni-rich sulfide melt and leaves a solid residue called monosulfide solid solution (mss). However, the persistence of crystalline sulfide phases like mss in the Earth’s mantle at higher temperatures and pressures deep within the Earth has long been up for debate, as the presence of both mss and sulfide melt in mantle rocks implies the fractionation of chalcophile elements during mantle melting. Recent studies have shown that the average mantle sulfide (45 wt.% Fe, 16 wt.% Ni, 1 wt.% Cu, and 38 wt.% S), is fully molten at average mantle potential temperatures (1300–1400 $$^{\circ }$$ C) up to 8 GPa (ca. 240 km). However, sulfide inclusions found in diamonds show a broad compositional spectrum, ranging from Ni-poor and Fe-rich (eclogitic), to Ni-rich and Fe-poor sulfides (peridotitic), with their Cu contents being generally low. The wide compositional variety of diamond-hosted sulfide inclusions raises the possibility that results on the melting properties obtained from this average mantle sulfide compositional may not reflect that found in those inclusions. As such, further investigation of the melting properties of sulfides from a wide compositional range is necessary. Here, we present the results of an experimental study where the melting properties of typical sulfide compositions found in diamond inclusions associated with eclogites and peridotites have been determined. Experiments have been carried out between 0.1 MPa and 14 GPa, and between 920 and 1590 $$^{\circ }$$ C, on box muffle furnaces, end-loaded piston cylinder, and multi-anvil apparatuses. Results show that solid mss in Fe-rich, Ni-poor sulfide inclusions associated with eclogites persist to higher pressures and temperatures compared to their less-refractory, more Ni-rich peridotitic counterparts to the depth of the mantle transition zone (410 km depth). Our results have implications for the recycling of chalcophile elements during subduction-related processes and the entrapment of sulfides in diamonds.

Funder

Deutsche Forschungsgemeinschaft

Ruhr-Universität Bochum

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3