Sulfide Melt Wetting Properties in Earth's Mantle: New Constraints From Combined 2D and 3D Imaging

Author:

Beyer C.1ORCID,Fonseca R. O. C.1ORCID,Bissbort T.2ORCID,Schröer L.3ORCID,Cnudde V.34ORCID

Affiliation:

1. Inst. for Geology, Mineralogy and Geophysics Ruhr‐Universität Bochum Bochum Germany

2. Dept. of Earth and Environmental Sciences Ludwig‐Maximilians‐Universität München Munich Germany

3. PProGRess‐UGCT Department of Geology Ghent University Ghent Belgium

4. Environmental Hydrogeology Department of Earth Sciences Utrecht University Utrecht The Netherlands

Abstract

AbstractBase‐metal sulfur liquids (mattes) play a crucial role as metasomatic agents and carriers of highly siderophile elements (HSE) within the Earth's mantle. Prior research has predominantly focused on sulfur‐poor metallic liquids involved in core formation scenarios. We conducted high‐pressure experiments using a multi‐anvil apparatus to investigate the effects of pressure, non‐ferrous compounds in mattes, and the mineral composition of the silicate host on matte wetting properties. Specifically, we explored conditions representing both the lithospheric (6 and 7 GPa) and sub‐lithospheric Earth's mantle (13 GPa). We characterized the experiments using the distribution of the dihedral angle in backscattered‐electron sections and the sphericity and network topology of the mattes in tomography scans. Our findings reveal distinct behaviors: while the matte in olivine‐dominated samples exhibited behaviors consistent with previous studies, such as high dihedral angle values (94° and 100°), the majorite‐bearing sample run at 13 GPa formed a disseminated network with a mean dihedral angle of 43°, below the connectivity threshold of 60°. Furthermore, in an experiment involving a garnet‐bearing silicate host, we observed a decrease in the matte's dihedral angle to 72°. Our results suggest that pressure within mafic hosts contributes to increased matte mobility in the sub‐lithospheric Earth's mantle, especially inasmuch as the stability of garnet phases is concerned. Consequently, mattes within subducted oceanic crusts may efficiently transport HSE into surrounding lithologies, while mattes within depleted, more harzburgitic lithologies and the ambient mantle may remain trapped within the silicate host at low melt fractions.

Funder

Deutsche Forschungsgemeinschaft

Horizon 2020 Framework Programme

Universiteit Gent

Bijzonder Onderzoeksfonds UGent

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3