Sorption and Reaction of Biomass Derived HC Blends and Their Constituents on a Commercial Pt–Pd/Al2O3 Oxidation Catalyst

Author:

Schönberger Ariel AugustoORCID,Haselmann Greta Marie,Wolkenar Bernd,Schönebaum Simon,Mauermann Peter,Sterlepper Stefan,Pischinger Stefan,Simon Ulrich

Abstract

AbstractWithin the Research Cluster of Excellence “The Fuel Science Center” at RWTH Aachen University, the production and application of new fuels from bio-based carbon feedstocks and CO2 with hydrogen from renewable electricity generation is being investigated. In this study, the storage and oxidation of ethanol, 1-butanol, 2-butanone, cyclopentanone, and cyclopentane as well as two blends thereof on a series production Pt–Pd/Al2O3 oxidation catalyst were investigated. Hydrocarbon (HC) storage and temperature-programmed surface reaction (TPSR) experiments were carried out to analyze their adsorption and desorption behavior. In addition, the individual HCs and both blends were investigated using Diffuse Reflectance Infrared Fourier Transform Spectroscopy (TP-DRIFTS). In general, all oxygenated HCs are adsorbed more strongly than cyclopentane due to their higher polarity. Interestingly, it could be observed that the two different blends [blend 1: ethanol (50 mol %), 2-butanone (21 mol %), cyclopentanone (14 mol %) and cyclopentane (15 mol %); blend 2: 1-butanol (45 mol %), ethanol (29 mol %) and cyclopentane (27 mol %)] exhibit a different storage behavior compared to the single hydrocarbons. It was shown that the presence of 1-butanol and cyclopentane in blend 2 strongly inhibits the oxidation of ethanol. As a result, the ethanol light-off temperature was increased by at least 100 K. A difference was also found in the storage behavior of cyclopentane. While no significant storage could be detected in the pure compound experiment, the experiments with both mixtures showed a larger amount stored. The presence of adsorbed species of the hydrocarbons and their corresponding reaction products has been demonstrated and gives an insight into the storage mechanism of blends. Graphic Abstract

Funder

Deutsche Forschungsgemeinschaft

RWTH Aachen University

Publisher

Springer Science and Business Media LLC

Subject

General Chemistry,Catalysis

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3