Taxonomic, Temporal, and Spatial Variations in Zooplankton Fatty Acid Composition in Puget Sound, WA, USA

Author:

Hiltunen MinnaORCID,Strandberg Ursula,Brett Michael T.,Winans Amanda K.,Beauchamp David A.,Kotila Miika,Keister Julie E.

Abstract

AbstractFatty acid (FA) content and composition of zooplankton in Puget Sound, Washington (USA) was studied to investigate the nutritional quality of diverse zooplankton prey for juvenile salmon (Oncorhynchus spp.) in terms of their essential fatty acid (EFA) content. The study focus was on eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and arachidonic acid (ARA) as these are key FA needed to maintain growth and development of juvenile fish. The different zooplankton taxa varied in their FA composition. Much of the variation in FA composition was driven by 18:1ω9 (a biomarker of carnivory), ARA, DHA, and FA characteristic of diatoms, which are linked to zooplankton diet sources. Gammarid and hyperiid amphipods contained the highest amount of EFA, particularly the gammarid amphipod Cyphocaris challengeri, while shrimp and copepods had much lower EFA content. Crab larvae, which are important prey for juvenile salmon in Puget Sound, had intermediate EPA + DHA content and the lowest DHA/EPA ratio, and were rich in diatom biomarkers. Temporal and spatial trends in zooplankton lipids were less apparent than the taxonomic differences, although the EFA content increased from spring to summer in Cancridae zoeae and the amphipod C. challengeri. These results on taxon-specific EFA content provide baseline information on the nutritional quality of zooplankton that can be applied in food web models. Combining zooplankton fatty acid data (quality) with taxon-specific zooplankton biomass data (quantity) enables development of new, sensitive indicators of juvenile fish production to help assess recent declines in salmon production in the Pacific Northwest and predict future adult returns.

Publisher

Springer Science and Business Media LLC

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3