An Ensemble-Learning-Based Method for Short-Term Water Demand Forecasting
Author:
Funder
Beibu Gulf University
Publisher
Springer Science and Business Media LLC
Subject
Water Science and Technology,Civil and Structural Engineering
Link
https://link.springer.com/content/pdf/10.1007/s11269-021-02808-4.pdf
Reference24 articles.
1. Adamowski J, Karapataki C (2010) Comparison of multivariate regression and artificial neural networks for peak urban water-demand forecasting: evaluation of different ANN learning algorithms. J Hydrol Eng 15(10):729–743
2. Adamowski J, Chan FH, Prasher SO, Ozga-Zielinski B, Sliusarieva A (2012) Comparison of multiple linear and nonlinear regression, autoregressive integrated moving average, artificial neural network, and wavelet artificial neural network methods for urban water demand forecasting in Montreal, Canada. Water Resour Res 48(1):W01528
3. Banjac G, Vašak M, Baotic M (2015) Adaptable urban water demand prediction system. Water Sci Tech-W Sup 15(5):958–963
4. Borra S, Ciaccio AD (2002) Improving nonparametric regression methods by bagging and boosting. Comput Stat Data An 38(4):407–420
5. Bougadis J, Adamowski K, Diduch R (2005) Short-term municipal water demand forecasting. Hydrol Process 19(1):137–148
Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Long-term water demand forecasting using artificial intelligence models in the Tuojiang River basin, China;PLOS ONE;2024-05-22
2. Artificial Intelligence for Water Consumption Assessment: State of the Art Review;Water Resources Management;2024-04-25
3. Enhanced Deep Learning Method for Natural Gas Pipeline Flow Prediction Based on Integrated Learning;IEEE Access;2024
4. Intelligent demand forecasting in marketing sector using concatenated CNN with ANFIS enhanced by heuristic algorithm;Journal of Control and Decision;2023-10-16
5. A Machine Learning Framework for Enhancing Short-Term Water Demand Forecasting Using Attention-BiLSTM Networks Integrated with XGBoost Residual Correction;Water;2023-10-15
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3