A Machine Learning Framework for Enhancing Short-Term Water Demand Forecasting Using Attention-BiLSTM Networks Integrated with XGBoost Residual Correction

Author:

Shan Shihao1,Ni Hongzhen1,Chen Genfa1,Lin Xichen12,Li Jinyue1

Affiliation:

1. State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research (IWHR), Beijing 100038, China

2. Department of Hydraulic Engineering, Tsinghua University, Beijing 100038, China

Abstract

Accurate short-term water demand forecasting assumes a pivotal role in optimizing water supply control strategies, constituting a cornerstone of effective water management. In recent times, the rise of machine learning technologies has ushered in hybrid models that exhibit superior performance in this domain. Given the intrinsic non-linear fluctuations and variations in short-term water demand sequences, achieving precise forecasts presents a formidable challenge. Against this backdrop, this study introduces an innovative machine learning framework for short-term water demand prediction. The maximal information coefficient (MIC) is employed to select high-quality input features. A deep learning architecture is devised, featuring an Attention-BiLSTM network. This design leverages attention weights and the bidirectional information in historical sequences to highlight influential factors and enhance predictive capabilities. The integration of the XGBoost algorithm as a residual correction module further bolsters the model’s performance by refining predicted results through error simulation. Hyper-parameter configurations are fine-tuned using the Keras Tuner and random parameter search. Through rigorous performance comparison with benchmark models, the superiority and stability of this method are conclusively demonstrated. The attained results unequivocally establish that this approach outperforms other models in terms of predictive accuracy, stability, and generalization capabilities, with MAE, RMSE, MAPE, and NSE values of 544 m3/h, 915 m3/h, 1.00%, and 0.99, respectively. The study reveals that the incorporation of important features selected by the MIC, followed by their integration into the attention mechanism, essentially subjects these features to a secondary filtration. While this enhances model performance, the potential for improvement remains limited. Our proposed forecasting framework offers a fresh perspective and contribution to the short-term water resource scheduling in smart water management systems.

Funder

National Key Research and Development Plan of China

Basal Research Fund of China Institute of Water Resources and Hydropower Research

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3