Towards an EPR on a Chip Spectrometer for Monitoring Radiation Damage During X-ray Absorption Spectroscopy

Author:

Shabratova Ekaterina,Lotfi Hadi,Sakr Ayman,Hassan Mohamed Atef,Kern Michal,Neeb Matthias,Grüneberger René,Klemke Bastian,Marcozzi Gianluca,Kiefer Klaus,Tsarapkin Aleksei,Höflich Katja,Dittwald Alina,Denker Andrea,Anders Jens,McPeak Joseph E.,Lips Klaus

Abstract

AbstractElectron paramagnetic resonance (EPR) spectroscopy is an essential tool to investigate the effects of ionizing radiation, which is routinely administered for reducing contaminations and waste in food products and cosmetics as well as for sterilization in industry and medicine. In materials research, EPR methods are not only employed as a spectroscopic method of structural investigations, but also have been employed for detection of changes in electronic structure due to radiation damage from high energy X-rays, for example, to monitor radical formation inside biomolecules caused by X-ray irradiation at carbon, nitrogen, and oxygen K-edges at synchrotron facilities. Here a compact EPR spectrometer, based on EPR-on-a-chip (EPRoC) sensor and a portable electromagnet, has been developed as a solution for monitoring radiation damage of samples during their investigation by X-ray absorption spectroscopy (XAS) at synchrotron facilities. A portable electromagnet with a soft iron core and forced air temperature stabilization was constructed as the source of the external magnetic field. The sweep range of magnetic field inside the most homogeneous region of the portable electromagnet is 12–290 mT. The compact spectrometer performance was evaluated by placing the EPRoC sensor inside either a commercial electromagnet or the portable electromagnet to record the EPR spectrum of tempol, irradiated alanine, and dilithium phthalocyanine (Li2Pc). The potential performance of the portable spectrometer for the detection of radiation damage in organic compounds and transition metal-containing catalysts during XAS measurements in both fluorescence and transmission modes was calculated with promising implications for measurements after implementation in a synchrotron-based XAS spectrometer.

Funder

Bundesministerium für Bildung und Forschung

Helmholtz International Research School

Deutsche Forschungsgemeinschaft

Helmholtz Energy Materials Foundry

Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3