Efficient Access Method for Multi-access Edge Servers in Dynamic Map Systems

Author:

Hosono KoheiORCID,Maki Akihiko,Watanabe Yousuke,Takada Hiroaki,Sato Kenya

Abstract

AbstractResearch and development on connected cars equipped with communication functions is being conducted, and dynamic maps are being researched and developed as an information and communication platform for cooperative automatic driving. There is a concern about scalability when dynamic maps are constructed on a cloud server to aggregate a wide range of vehicle information. The problem can be alleviated by deploying edge servers that divide the geographic area where vehicles travel and manage each of them. The IP addresses of the edge servers need to be resolved on the basis of the location information of the moving vehicles. Using TCP improves reliability but reduces efficiency because the vehicles move. In this study, we developed a novel method for accessing edge servers that achieves higher reliability and efficiency by adopting UDP using anycast for transmission from vehicle to edge server and implementing a retransmission function. The effectiveness of this access method was verified by using a vehicle driving simulation.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

General Neuroscience,Computer Science Applications,Software,Automotive Engineering,Applied Mathematics,Control and Systems Engineering,Aerospace Engineering,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. High-Definition Maps: Comprehensive Survey, Challenges, and Future Perspectives;IEEE Open Journal of Intelligent Transportation Systems;2023

2. Dynamic Maps Requirements for Autonomous Navigation on Construction Sites;2022 5th International Conference on Communications, Signal Processing, and their Applications (ICCSPA);2022-12-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3