Variable selection using a smooth information criterion for distributional regression models

Author:

O’Neill MeadhbhORCID,Burke KevinORCID

Abstract

AbstractModern variable selection procedures make use of penalization methods to execute simultaneous model selection and estimation. A popular method is the least absolute shrinkage and selection operator, the use of which requires selecting the value of a tuning parameter. This parameter is typically tuned by minimizing the cross-validation error or Bayesian information criterion, but this can be computationally intensive as it involves fitting an array of different models and selecting the best one. In contrast with this standard approach, we have developed a procedure based on the so-called “smooth IC” (SIC) in which the tuning parameter is automatically selected in one step. We also extend this model selection procedure to the distributional regression framework, which is more flexible than classical regression modelling. Distributional regression, also known as multiparameter regression, introduces flexibility by taking account of the effect of covariates through multiple distributional parameters simultaneously, e.g., mean and variance. These models are useful in the context of normal linear regression when the process under study exhibits heteroscedastic behaviour. Reformulating the distributional regression estimation problem in terms of penalized likelihood enables us to take advantage of the close relationship between model selection criteria and penalization. Utilizing the SIC is computationally advantageous, as it obviates the issue of having to choose multiple tuning parameters.

Funder

Science Foundation Ireland

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Statistics, Probability and Uncertainty,Statistics and Probability,Theoretical Computer Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3