Smooth Information Criterion for Regularized Estimation of Item Response Models

Author:

Robitzsch Alexander12ORCID

Affiliation:

1. IPN—Leibniz Institute for Science and Mathematics Education, Olshausenstraße 62, 24118 Kiel, Germany

2. Centre for International Student Assessment (ZIB), Olshausenstraße 62, 24118 Kiel, Germany

Abstract

Item response theory (IRT) models are frequently used to analyze multivariate categorical data from questionnaires or cognitive test data. In order to reduce the model complexity in item response models, regularized estimation is now widely applied, adding a nondifferentiable penalty function like the LASSO or the SCAD penalty to the log-likelihood function in the optimization function. In most applications, regularized estimation repeatedly estimates the IRT model on a grid of regularization parameters λ. The final model is selected for the parameter that minimizes the Akaike or Bayesian information criterion (AIC or BIC). In recent work, it has been proposed to directly minimize a smooth approximation of the AIC or the BIC for regularized estimation. This approach circumvents the repeated estimation of the IRT model. To this end, the computation time is substantially reduced. The adequacy of the new approach is demonstrated by three simulation studies focusing on regularized estimation for IRT models with differential item functioning, multidimensional IRT models with cross-loadings, and the mixed Rasch/two-parameter logistic IRT model. It was found from the simulation studies that the computationally less demanding direct optimization based on the smooth variants of AIC and BIC had comparable or improved performance compared to the ordinarily employed repeated regularized estimation based on AIC or BIC.

Publisher

MDPI AG

Reference63 articles.

1. Baker, F.B., and Kim, S.H. (2004). Item Response Theory: Parameter Estimation Techniques, CRC Press.

2. Bock, R.D., and Gibbons, R.D. (2021). Item Response Theory, Wiley.

3. Chen, Y., Li, X., Liu, J., and Ying, Z. (2021). Item response theory—A statistical framework for educational and psychological measurement. arXiv.

4. van der Linden, W.J., and Hambleton, R.K. (1997). Handbook of Modern Item Response Theory, Springer.

5. Brennan, R.L. (2006). Educational Measurement, Praeger Publishers.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3