Implementation Aspects in Invariance Alignment

Author:

Robitzsch Alexander12ORCID

Affiliation:

1. IPN—Leibniz Institute for Science and Mathematics Education, Olshausenstraße 62, 24118 Kiel, Germany

2. Centre for International Student Assessment (ZIB), Olshausenstraße 62, 24118 Kiel, Germany

Abstract

In social sciences, multiple groups, such as countries, are frequently compared regarding a construct that is assessed using a number of items administered in a questionnaire. The corresponding scale is assessed with a unidimensional factor model involving a latent factor variable. To enable a comparison of the mean and standard deviation of the factor variable across groups, identification constraints on item intercepts and factor loadings must be imposed. Invariance alignment (IA) provides such a group comparison in the presence of partial invariance (i.e., a minority of item intercepts and factor loadings are allowed to differ across groups). IA is a linking procedure that separately fits a factor model in each group in the first step. In the second step, a linking of estimated item intercepts and factor loadings is conducted using a robust loss function L0.5. The present article discusses implementation alternatives in IA. It compares the default L0.5 loss function with Lp with other values of the power p between 0 and 1. Moreover, the nondifferentiable Lp loss functions are replaced with differentiable approximations in the estimation of IA that depend on a tuning parameter ε (such as, e.g., ε=0.01). The consequences of choosing different values of ε are discussed. Moreover, this article proposes the L0 loss function with a differentiable approximation for IA. Finally, it is demonstrated that the default linking function in IA introduces bias in estimated means and standard deviations if there is noninvariance in factor loadings. Therefore, an alternative linking function based on logarithmized factor loadings is examined for estimating factor means and standard deviations. The implementation alternatives are compared through three simulation studies. It turned out that the linking function for factor loadings in IA should be replaced by the alternative involving logarithmized factor loadings. Furthermore, the default L0.5 loss function is inferior to the newly proposed L0 loss function regarding the bias and root mean square error of factor means and standard deviations.

Publisher

MDPI AG

Subject

Statistics and Probability

Reference63 articles.

1. Measurement invariance, factor analysis and factorial invariance;Meredith;Psychometrika,1993

2. Item bias and item response theory;Mellenbergh;Int. J. Educ. Res.,1989

3. Millsap, R.E. (2011). Statistical Approaches to Measurement Invariance, Routledge.

4. van de Vijver, F.J.R. (2019). Invariance Analyses in Large-Scale Studies, OECD.

5. Multiple-group factor analysis alignment;Asparouhov;Struct. Equ. Model.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3