Creating Immersive Virtual Environments Based on Open Geospatial Data and Game Engines

Author:

Keil JulianORCID,Edler DennisORCID,Schmitt ThomasORCID,Dickmann FrankORCID

Abstract

AbstractModern game engines like Unity allow users to create realistic 3D environments containing terrains as well as natural and artificial objects easily and swiftly. In addition, recent advances of game engine capabilities enable effortless implementation of virtual reality (VR) compatibility. 3D environments created with VR compatibility can be experienced from an egocentric and stereoscopic perspective that surpasses the immersion of the ‘classical’ screen-based perception of 3D environments. Not only game developers benefit from the possibilities provided by game engines. The ability to use geospatial data to shape virtual 3D environments opens a multitude of possibilities for geographic applications, such as construction planning, spatial hazard simulations or representation of historical places. The multi-perspective, multimodal reconstruction of three-dimensional space based on game engine technology today supports the possibility of linking different approaches of geographic work more closely. Free geospatial data that can be used for spatial reconstructions is provided by numerous national and regional official institutions. However, the file format of these data sources is not standardized and game engines only support a limited number of file formats. Therefore, format transformation is usually required to apply geospatial data to virtual 3D environments. This paper presents several workflows to apply digital elevation data and 3D city model data from OpenStreetMap and the Open.NRW initiative to Unity-based 3D environments. Advantages and disadvantages of different sources of geospatial data are discussed. In addition, implementation of VR compatibility is described. Finally, benefits of immersive VR implementation and characteristics of current VR hardware are discussed in the context of specific geographic application scenarios.

Funder

Stifterverband

Deutsche Forschungsgemeinschaft

Projekt DEAL

Publisher

Springer Science and Business Media LLC

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Earth-Surface Processes

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3