Combining Drone LiDAR and Virtual Reality Geovisualizations towards a Cartographic Approach to Visualize Flooding Scenarios

Author:

Papadopoulou Ermioni Eirini1,Papakonstantinou Apostolos1ORCID

Affiliation:

1. Department of Civil Engineering and Geomatics, School of Engineering and Technology, Cyprus University of Technology, Lemesos 3603, Cyprus

Abstract

This study aims to create virtual reality (VR) geovisualizations using 3D point clouds obtained from airborne LiDAR technology. These visualizations were used to map the current state of river channels and tributaries in the Thessalian Plain, Greece, following severe flooding in the summer of 2023. The study area examined in this paper is the embankments enclosing the tributaries of the Pineios River in the Thessalian Plain region, specifically between the cities of Karditsa and Trikala in mainland Greece. This area was significantly affected in the summer of 2023 when flooding the region’s rivers destroyed urban elements and crops. The extent of the impact across the entire Thessalian Plain made managing the event highly challenging to the authorities. High-resolution 3D mapping and VR geovisualization of the embarkments encasing the main rivers and the tributaries of the Thessalian Plain essentially provides information for planning the area’s restoration processes and designing prevention and mitigation measures for similar disasters. The proposed methodology consists of four stages. The first and second stages of the methodology present the design of the data acquisition process with airborne LiDAR, aiming at the high-resolution 3D mapping of the sites. The third stage focuses on data processing, cloud point classification, and thematic information creation. The fourth stage is focused on developing the VR application. The VR application will allow users to immerse themselves in the study area, observe, and interact with the existing state of the embankments in high resolution. Additionally, users can interact with the 3D point cloud, where thematic information is displayed describing the classification of the 3D cloud, the altitude, and the RGB color. Additional thematic information in vector form, providing qualitative characteristics, is also illustrated in the virtual space. Furthermore, six different scenarios were visualized in the 3D space using a VR app. Visualizing these 3D scenarios using digital twins of the current antiflood infrastructure provides scenarios of floods at varying water levels. This study aims to explore the efficient visualization of thematic information in 3D virtual space. The goal is to provide an innovative VR tool for managing the impact on anthropogenic infrastructures, livestock, and the ecological capital of various scenarios of a catastrophic flood.

Funder

ORIENTATE

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3