Author:
Hao Jia,Gan Jianhou,Zhu Luyu
Funder
National Nature Science Foundation of China
Yunnan Expert Workstation of Xiaochun Cao
Publisher
Springer Science and Business Media LLC
Subject
Library and Information Sciences,Education
Reference34 articles.
1. Albelbisi, N. A., Al-Adwan, A. S., & Habibi, A. (2021). Self-regulated learning and satisfaction: A key determinants of MOOC success. Education and Information Technologies, 26(3), 3459–3481. https://doi.org/10.1007/s10639-020-10404-z.
2. Borrella, I., Caballero-Caballero, S., & Ponce-Cueto, E. (2019). Predict and Intervene: Addressing the Dropout Problem in a MOOC-based Program. ACM Conference on Learing @ Scale, 24, 1–9.
3. Bote-Lorenzo, M. L., & Gómez-Sánchez, E. (2017). Predicting the decrease of engagement indicators in a MOOC. International Learning Analytics & Knowledge Conference, 143–7.
4. Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324.
5. Burd, H., Bell, A., Hemberg, E., & O’Reilly, U.-M. (2020). Analyzing pre-existing knowledge and performance in a programming MOOC. ACM Conference on Learning @ Scale, 281–4.
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献