Dual Pathway Model of Responses Between Climate Change and Livestock Production

Author:

Iyiola-Tunji Adetunji Oroye,Adamu James Ijampy,John Paul Apagu,Muniru Idris

Abstract

AbstractThis chapter was aimed at evaluating the responses of livestock to fluctuations in climate and the debilitating effect of livestock production on the environment. Survey of livestock stakeholders (farmers, researchers, marketers, and traders) was carried out in Sahel, Sudan, Northern Guinea Savannah, Southern Guinea Savannah, and Derived Savannah zones of Nigeria. In total, 362 respondents were interviewed between April and June 2020. The distribution of the respondents was 22 in Sahel, 57 in Sudan, 61 in Northern Guinea Savannah, 80 in Southern Guinea Savannah, and 106 in Derived Savannah. The respondents were purposively interviewed based on their engagement in livestock production, research or trading activities. Thirty-eight years’ climate data from 1982 to 2019 were obtained from Nigerian Metrological Agency, Abuja. Ilela, Kiyawa, and Sabon Gari were chosen to represent Sahel, Sudan, and Northern Guinea Savannah zone of Nigeria, respectively. The data contained precipitation, relative humidity, and minimum and maximum temperature. The temperature humidity index (THI) was calculated using the formula: THI = 0.8*T + RH*(T-14.4) + 46.4, where T = ambient or dry-bulb temperature in °C and RH=relative humidity expressed as a proportion. Three Machine Learning model were built to predict the monthly minimum temperature, maximum temperature, and relative humidity respectively based on information from the previous 11 months. The methodology adopted is to treat each prediction task as a supervised learning problem. This involves transforming the time series data into a feature-target dataset using autoregressive (AR) technique. The major component of the activities of livestock that was known to cause injury to the environment as depicted in this chapter was the production of greenhouse gases. From the respondents in this chapter, some adaptive measures were stated as having controlling and mitigating effect at reducing the effect of activities of livestock on the climate and the environment. The environment and climate on the other side of the dual pathway is also known to induce stress on livestock. The concept of crop-livestock integration system is advocated in this chapter as beneficial to livestock and environment in the short and long run. Based on the predictive model developed for temperature and relative humidity in a sample location (Ilela) using Machine Learning in this chapter, there is need for development of a web or standalone application that will be useable by Nigerian farmers, meteorological agencies, and extension organizations as climate fluctuation early warning system. Development of this predictive model needs to be expanded and made functional.

Publisher

Springer International Publishing

Reference80 articles.

1. AbdulKadir A, Usman MT, Shaba AH (2015) An integrated approach to delineation of the eco-climatic zones in Northern Nigeria. J Ecol Nat Environ 7(9):247–255

2. Adebayo AA, Oruonye ED (2012) An assessment of the level of farmers awareness and adaptation to climate change in Northern Taraba State, Nigeria. In: Proceedings of the 2012 climate change and ICT conference by Centre for Climate Change and Environmental Research, Osun State University, Osogbo

3. Adegoke J, Lamptey BL (1999) Intra seasonal variability of summertime precipitation in the Guinea Coastal Region of West Africa’. Paper presented at Cheikh Anta Diop University, Dakar, Senegal, June 1999

4. Adesogan AT, Havelaar AH, Mckune SL, Eilitta M, Dahl GE (2020) Animal source foods: Sustainability problem or malnutrition and sustainability solution? Perspective matters. Glob Food Secur 25:1–7

5. Akande A, Costa AC, Mateu J, Henriques R (2017) Geospatial analysis of extreme weather events in Nigeria (1985–2015) using self-organizing maps. Adv Meteorol 2017:11, Article ID 8576150. https://doi.org/10.1155/2017/8576150

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3