1. Ahadi, A., Lister, R., Haapala, H., Vihavainen, A.: Exploring machine learning methods to automatically identify students in need of assistance. In: ICER 2015, pp. 121–130 (2015)
2. Lecture Notes in Computer Science;A Alamri,2019
3. Castro-Wunsch, K., Ahadi, A., Petersen, A.: Evaluating neural networks as a method for identifying students in need of assistance. In: Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education, pp. 111–116. ACM (2017)
4. Chen, W., Brinton, C.G., Cao, D., Mason-Singh, A., Lu, C., Chiang, M.: Earlydetection prediction of learning outcomes in online short-courses vialearning behaviors. IEEE Trans. Learn. Technol. (2018)
5. Cristea, A.I., Alamri, A., Kayama, M., Stewart, C., Alsheri, M., Shi, L.: Earliest predictor of dropout in moocs: a longitudinal study of futurelearn courses. In: 27th International Conference on Information Systems Development (ISD2018), Lund, Sweden. Association for Information Systems (2018)