Author:
Wang Ziwei,Koprinska Irena,Jeffries Bryn
Publisher
Springer Nature Switzerland
Reference8 articles.
1. Asif, R., Merceron, A., Ali, S.A., Haider, N.G.: Analyzing undergraduate students’ performance using educational data mining. Comput. Educ. 113, 177–194 (2017)
2. Dsilva, V., Schleiss, J., Stober, S.: Trustworthy academic risk prediction with explainable boosting machines. In: Wang, N., Rebolledo-Mendez, G., Matsuda, N., Santos, O.C., Dimitrova, V. (eds.) AIED 2023. LNCS, vol. 13916, pp. 463–475. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-36272-9_38
3. Koprinska, I., Stretton, J., Yacef, K.: Predicting student performance from multiple data sources. In: Conati, C., Heffernan, N., Mitrovic, A., Verdejo, M. (eds.) AIED 2015. LNCS, vol. 9112, pp. 678–681. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19773-9_90
4. Koprinska, I., Stretton, J., Yacef, K.: Students at risk: detection and remediation. In: Educational Data Mining, pp. 512–515 (2015)
5. McBroom, J., Paassen, B., Jeffries, B., Koprinska, I., Yacef, K.: Progress networks as a tool for analysing student programming difficulties. In: Australasian Computing Education Conference, pp. 158–167 (2021)