Abstract
AbstractProcess mining algorithms discover a process model from an event log. The resulting process model is supposed to describe all possible event sequences of the underlying system. Generalization is a process model quality dimension of interest. A generalization metric should quantify the extent to which a process model represents the observed event sequences contained in the event log and the unobserved event sequences of the system. Most of the available metrics in the literature cannot properly quantify the generalization of a process model. A recently published method called Adversarial System Variant Approximation leverages Generative Adversarial Networks to approximate the underlying event sequence distribution of a system from an event log. While this method demonstrated performance gains over existing methods in measuring the generalization of process models, its experimental evaluations have been performed under ideal conditions. This paper experimentally investigates the performance of Adversarial System Variant Approximation under non-ideal conditions such as biased and limited event logs. Moreover, experiments are performed to investigate the originally proposed sampling parameter value of the method on its performance to measure the generalization. The results confirm the need to raise awareness about the working conditions of the Adversarial System Variant Approximation method and serve to initiate future research directions.
Publisher
Springer International Publishing
Reference23 articles.
1. van der Aalst, W., Adriansyah, A., van Dongen, B.: Replaying history on process models for conformance checking and performance analysis. Wiley Interdisc. Rev. Data Mining Knowl. Disc. 2(2), 182–192 (2012). https://doi.org/10.1002/widm.1045
2. van der Aalst, W.M., et al.: Business process mining: an industrial application. Inf. Syst. 32(5), 713–732 (2007)
3. Arora, S., Ge, R., Liang, Y., Ma, T., Zhang, Y.: Generalization and equilibrium in generative adversarial nets (GANs). In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 224–232. JMLR. org (2017)
4. Augusto, A., Conforti, R., Dumas, M., La Rosa, M., Polyvyanyy, A.: Split miner: automated discovery of accurate and simple business process models from event logs. Knowl. Inf. Syst. 59(2), 251–284 (2018). https://doi.org/10.1007/s10115-018-1214-x
5. vanden Broucke, S.K., De Weerdt, J.: Fodina: a robust and flexible heuristic process discovery technique. Decis. Support. Syst. 100, 109–118 (2017)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献