Author:
Rifat Md.,Uddin Md. Sazid,Rozario Victor Stany,Nandi Dip
Publisher
Springer Nature Singapore
Reference53 articles.
1. Frid-Adar, M., Diamant, I., Klang, E., Amitai, M., Goldberger, J., Greenspan, H.: GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification. Neurocomputing 321, 321–331 (2018). https://www.sciencedirect.com/science/article/abs/pii/S0925231218310749
2. Goodfellow, I. et al.: Generative adversarial nets. Advances in Neural Information Processing Systems, vol. 27 (2014)
3. Sun, Liyan, Wang, Jiexiang, Huang, Yue, Ding, Xinghao, Greenspan, Hayit, Paisley, John: An adversarial learning approach to medical image synthesis for lesion detection. IEEE J. Biomed. Health Inf. 24(8), 2303–2314 (2020)
4. Shaham, T.R., Dekel, T., Michaeli, T.: Singan: learning a generative model from a single natural image. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4570–4580 (2019)
5. Mirza, M., Osindero, S.: Conditional generative adversarial nets (2014). arXiv:1411.1784