Data-Driven Invariant Learning for Probabilistic Programs

Author:

Bao JialuORCID,Trivedi Nitesh,Pathak Drashti,Hsu JustinORCID,Roy SubhajitORCID

Abstract

AbstractMorgan and McIver’s weakest pre-expectation framework is one of the most well-established methods for deductive verification of probabilistic programs. Roughly, the idea is to generalize binary state assertions to real-valued expectations, which can measure expected values of probabilistic program quantities. While loop-free programs can be analyzed by mechanically transforming expectations, verifying loops usually requires finding an invariant expectation, a difficult task.We propose a new view of invariant expectation synthesis as a regression problem: given an input state, predict the average value of the post-expectation in the output distribution. Guided by this perspective, we develop the first data-driven invariant synthesis method for probabilistic programs. Unlike prior work on probabilistic invariant inference, our approach can learn piecewise continuous invariants without relying on template expectations. We also develop a data-driven approach to learn sub-invariants from data, which can be used to upper- or lower-bound expected values. We implement our approaches and demonstrate their effectiveness on a variety of benchmarks from the probabilistic programming literature.

Publisher

Springer International Publishing

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Programmatic Strategy Synthesis: Resolving Nondeterminism in Probabilistic Programs;Proceedings of the ACM on Programming Languages;2024-01-05

2. A Deductive Verification Infrastructure for Probabilistic Programs;Proceedings of the ACM on Programming Languages;2023-10-16

3. An Integrated Program Analysis Framework for Graduate Courses in Programming Languages and Software Engineering;2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE);2023-09-11

4. Automated Expected Value Analysis of Recursive Programs;Proceedings of the ACM on Programming Languages;2023-06-06

5. A Theorem Proving Approach to Programming Language Semantics;2023 IEEE/ACM 45th International Conference on Software Engineering: Software Engineering Education and Training (ICSE-SEET);2023-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3