Automated Verification of Higher-Order Probabilistic Programs via a Dependent Refinement Type System

Author:

Kura Satoshi1ORCID,Unno Hiroshi2ORCID

Affiliation:

1. Waseda University, Tokyo, Japan

2. Tohoku University, Sendai, Japan

Abstract

Verification of higher-order probabilistic programs is a challenging problem. We present a verification method that supports several quantitative properties of higher-order probabilistic programs. Usually, extending verification methods to handle the quantitative aspects of probabilistic programs often entails extensive modifications to existing tools, reducing compatibility with advanced techniques developed for qualitative verification. In contrast, our approach necessitates only small amounts of modification, facilitating the reuse of existing techniques and implementations. On the theoretical side, we propose a dependent refinement type system for a generalised higher-order fixed point logic (HFL). Combined with continuation-passing style encodings of properties into HFL, our dependent refinement type system enables reasoning about several quantitative properties, including weakest pre-expectations, expected costs, moments of cost, and conditional weakest pre-expectations for higher-order probabilistic programs with continuous distributions and conditioning. The soundness of our approach is proved in a general setting using a framework of categorical semantics so that we don’t have to repeat similar proofs for each individual problem. On the empirical side, we implement a type checker for our dependent refinement type system that reduces the problem of type checking to constraint solving. We introduce admissible predicate variables and integrable predicate variables to constrained Horn clauses (CHC) so that we can soundly reason about the least fixed points and samplings from probability distributions. Our implementation demonstrates that existing CHC solvers developed for non-probabilistic programs can be extended to a solver for the extended CHC with only small efforts. We also demonstrate the ability of our type checker to verify various concrete examples.

Funder

Japan Science and Technology Agency

Japan Society for the Promotion of Science

Publisher

Association for Computing Machinery (ACM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3