Equivalence and Similarity Refutation for Probabilistic Programs

Author:

Chatterjee Krishnendu1ORCID,Goharshady Ehsan Kafshdar1ORCID,Novotný Petr2ORCID,Žikelić Đorđe3ORCID

Affiliation:

1. IST Austria, Klosterneuburg, Austria

2. Masaryk University, Brno, Czechia

3. Singapore Management University, Singapore, Singapore

Abstract

We consider the problems of statically refuting equivalence and similarity of output distributions defined by a pair of probabilistic programs. Equivalence and similarity are two fundamental relational properties of probabilistic programs that are essential for their correctness both in implementation and in compilation. In this work, we present a new method for static equivalence and similarity refutation. Our method refutes equivalence and similarity by computing a function over program outputs whose expected value with respect to the output distributions of two programs is different. The function is computed simultaneously with an upper expectation supermartingale and a lower expectation submartingale for the two programs, which we show to together provide a formal certificate for refuting equivalence and similarity. To the best of our knowledge, our method is the first approach to relational program analysis to offer the combination of the following desirable features: (1) it is fully automated, (2) it is applicable to infinite-state probabilistic programs, and (3) it provides formal guarantees on the correctness of its results. We implement a prototype of our method and our experiments demonstrate the effectiveness of our method to refute equivalence and similarity for a number of examples collected from the literature.

Funder

European Research Council

Czech Science Foundation

Publisher

Association for Computing Machinery (ACM)

Reference86 articles.

1. Sheshansh Agrawal, Krishnendu Chatterjee, and Petr Novotný. 2018. Lexicographic ranking supermartingales: an efficient approach to termination of probabilistic programs. Proc. ACM Program. Lang., 2, POPL (2018).

2. A pre-expectation calculus for probabilistic sensitivity

3. Alejandro Aguirre Gilles Barthe Justin Hsu and Alexandra Silva. 2018. Almost Sure Productivity. In ICALP.

4. Synthesizing coupling proofs of differential privacy

5. Ali Asadi, Krishnendu Chatterjee, Hongfei Fu, Amir Kafshdar Goharshady, and Mohammad Mahdavi. 2021. Polynomial reachability witnesses via Stellensätze. In PLDI.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3